Infantes E, Terrados J, Orfila A, Cañellas B, Álvarez-Ellacuria A
Botanica marina 52: 419-427
Publication year: 2009

ABSTRACT

It is widely accepted that light availability sets the lower limit of seagrass bathymetric distribution, while the upper limit depends on the level of disturbance by currents and waves. The establishment of light requirements for seagrass growth has been a major focus of research in marine ecology, and different quantitative models provide predictions for seagrass lower depth limits.

In contrast, the influence of energy levels on the establishment, growth, and maintenance of seagrasses has received less attention, and to date there are no quantitative models predicting the evolution of seagrasses as a function of hydrodynamics at a large scale level. Hence, it is not possible to predict either the upper depth limit of the distribution of seagrasses or the effects that different energy regimes will have on these limits.

The aim of this work is to provide a comprehensible methodology for obtaining quantitative knowledge and predictive capacity for estimating the upper depth limit of seagrasses as a response to wave energy dissipated on the seafloor. The methodology has been applied using wave data from 1958 to 2001 in order to obtain the mean wave climate in deep water seaward from an open sandy beach in the Balearic Islands, western Mediterranean Sea where the seagrass Posidonia oceanica forms an extensive meadow.

Mean wave conditions were propagated to the shore using a two-dimensional parabolic model over the detailed bathymetry. The resulting hydrodynamics were correlated with bottom type and the distribution of P. oceanica. Results showed a predicted near-bottom orbital velocity of between 38 and 42 cm s-1 as a determinant of the upper depth limit of P. oceanica.

This work shows the importance of interdisciplinary effort in ecological modeling and, in particular, the need for hydrodynamical studies to elucidate the distribution of seagrasses in shallow depths. Moreover, the use of predictive models would permit evaluation of the effects of coastal activities (construction of ports, artificial reefs, beach nutrient input, dredging) on benthic ecosystems.

Highlights

• Light availability determines lower limit of seagrass distribution, while upper limit depends on disturbance from currents and waves
• Previous research has focused on light requirements and models for seagrass lower depth limits
• This study provides methodology for predicting upper depth limit of seagrasses based on energy levels and wave dissipation on seafloor
• Results show near-bottom orbital velocity as determinant of upper depth limit of Posidonia oceanica, highlighting importance of hydrodynamical studies in ecological modeling.

Schematic diagram of the approach presented. HIPOCAS, hindcast of dynamic processes of the ocean and coastal areas of Europe.

Schematic diagram of the approach presented. HIPOCAS, hindcast of dynamic processes of the ocean and coastal areas of Europe.

Mean near-bottom orbital velocity above each bottom type in Cala Millor (Majorca, Western Mediterranean Sea). Different capital letters indicate significant differences between bottom types (post hoc multiple pairwise comparison of mean ranks, p-0.05). Error bars show 95% confidence intervals. N values indicate the number of points selected randomly in each bottom type. Differences in N values between bottom types are driven by the differences in percentage covers of each bottom type in the study area. P., Posidonia.

Mean near-bottom orbital velocity above each bottom type in Cala Millor (Majorca, Western Mediterranean Sea). Different capital letters indicate significant differences between bottom types (post hoc multiple pairwise comparison of mean ranks, p-0.05). Error bars show 95% confidence intervals. N values indicate the number of points selected randomly in each bottom type. Differences in N values between bottom types are driven by the differences in percentage covers of each bottom type in the study area. P. Posidonia oceanica.

Related Articles...

Acoustic Doppler Velocimeter (ADV) Vectrino, Nortek measuring wave action and flow velocities in a Posidonia seagrass meadow.

6. Effect of a seagrass (Posidonia oceanica) meadow on wave propagation

Journal Papers
Infantes E, Orfila A, Simarro G, Luhar M, Terrados J, Nepf H
Marine Ecology Progress Series 456: 63-72
Publication year: 2012
Artificial seagrass on hydraulic flume at MIT

3. Wave induced velocities inside a model seagrass bed

Journal Papers
Luhar M, Coutu S, Infantes E, Fox S, Nepf H
Journal of Geophysical Research Vol. 115, C12, 1-15
Publication year: 2010
Photo of Posidonia oceanica seedlings growing on sandy substrate in the Mediterranean Sea

5. Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure

Journal Papers
Infantes E, Orfila A, Bouma TJ, Simarro G, Terrados J
Limnology and Oceanography 56(6): 2223-2232
Publication year: 2011

34. Making realistic wave climates in low-cost wave mesocosms: a new tool for experimental ecology & biogeomorphology

Journal Papers
Infantes E, de Smit J, Tamarit E, Bouma TJ
Limnology and Oceanography: Methods, 19: 317-330
Publication year: 2021

14. Seagrass blade motion under waves and its impact on wave decay

Journal Papers
Luhar M, Infantes E, Nepf H
Journal of Geophysical Research - Oceans, 122.
Publication year: 2017
Two Acoustic Doppler Velocimeters (ADV) Vectrino, Nortek measuring wave action and flow velocities in a Posidonia seagrass meadow.

9. Field observations of wave-induced streaming through a submerged seagrass (Posidonia oceanica) meadow

Journal Papers
Luhar M, Infantes E, Orfila A, Terrados J, Nepf HM
Journal of Geophysical Research 118: 1-14
Publication year: 2013

39. Coastal ecosystem engineers and their impact on sediment dynamics: Eelgrass-bivalve interactions under wave exposure

Journal Papers
Meysick L, Infantes E, Rugiu L, Gagnon K, Boström C.
Limnology and Oceanography, 67(3): 621-633, doi: 10.1002/lno.12022
Publication year: 2022