Temmink RJM, Christianen MJA, Fivash GS, Angelini C, Boström C, Didderen K, Engel SM, Esteban N, Gaeckle JL, Gagnon K, Govers LL, Infantes E, van Katwijk MM, Kipson S, Lamers LPM, Lengkeek W, Silliman BR, van Tussenbroek BI, Unsworth RKF, Yaakub SM, Bouma TJ, van der Heide T
Nature Communications, 11:3668 (2020)
Publication year: 2020

Abstract

Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones.

Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement.

Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs.

https://doi.org/10.1038/s41467-020-17438-4

Highlights

• Restoration is a vital tool to counteract coastal ecosystem degradation.
• Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields through self-facilitation from emergent traits.
• Biodegradable establishment structures mimicking key emergent traits that locally suppress physical stress have demonstrated greatly enhanced yields in (sub)tropical and temperate seagrass and salt marsh systems.
• Mimicking key emergent traits may allow upscaling of restoration in many ecosystems, constraining biological material requirements and implementation costs.

Video summary of the research article

Related articles

Zostera marina shoot growing on biodegradable BESE structure for sediment stabilization

29. Coastal restoration success via emergent trait-mimicry is context dependent

Journal Papers
van der Heide T, Temmink R, Fivash G, Bouma T, Boström C, Diddere, K, Esteban N, Gaeckle J, Gagnon K, Infantes E, van der Koppel J, Lengkeek W, Unsworth R, Christianen MC,
Biological Conservation, 264: 109373.
Publication year: 2021
Feedbacks seagrass restoration

18. Local regime shifts prevent natural recovery and restoration of lost eelgrass beds along the Swedish west coast

Journal Papers
Moksnes P-O, Eriander L, Infantes E, Holmer M
Estuaries and Coasts, 41(6): 1712–1731
Publication year: 2018
Handbook for eelgrass restoration in Sweden

Handbook for eelgrass restoration in Sweden- A guideline

Reports
Moksnes P-O, Gipperth L, Eriander L, Laas K, Cole S, Infantes E
Swedish Agency for Marine and Water Management (HAVs). Report 2016:9, 146 pages. ISBN 978-91-87967-17-7
Publication year: 2016
Seedlings of eelgrass Zostera marina

12. Eelgrass (Zostera marina L.) restoration methods on the west coast of Sweden using seeds

Journal Papers
Infantes E, Eriander L, Moksnes P-O
Marine Ecology Progress Series 546: 31-45
Publication year: 2016

11. Assessing methods for restoration of eelgrass (Zostera marina L.) in a cold temperate region

Journal Papers
Eriander L, Infantes E, Olofsson M, Olsen JL, Moksnes P-O
Journal of Experimental Marine Biology and Ecology 479: 76-88
Publication year: 2016
A photo of a restoration experiment of Posidonia oceanica seedlings in Hornillo, Spain. The image shows several seedlings planted in the sandy substrate of the seafloor and surrounded by protective cages. The water is clear and blue, and the sunlight illuminates the seafloor.

7. Experimental evaluation of the restoration capacity of a fish-farm impacted area with Posidonia oceanica (L.) Delile seedlings

Journal Papers
Domínguez M, Celdrán-Sabater D, Muñoz-Vera A, Infantes E, Martinez-Baños P, Marín A, Terrados J
Restoration Ecology 20: 180-187
Publication year: 2012