Barcelona A, Colomer J, Serra T, Cossa D, Infantes E
Marine Environmental Research, 192: 106238
Publication year: 2023

Abstract

Seagrass epiphytic communities act as ecological indicators of the quality status of vegetated coastal environments. This study aims to determine the effect leaf epiphytes has on the sediment capture and distribution from outside sources. Thirteen laboratory experiments with a hydraulic wave flume were conducted under a wave frequency of 0.5 Hz. Three epiphyte models were attached to a Zostera marina canopy of 100 plants/m2 density. The sediment deposited to the seabed, captured by the epiphytic leaf surface, and remaining in suspension within the canopy were quantified.

This study demonstrated that the amount of epiphytes impacts on the sediment stocks. Zostera marina canopies with high epiphytic areas and long effective leaf heights may increase the sediment captured on the epiphyte surfaces. Also, reducing suspended sediment and increasing the deposition to the seabed, therefore enhancing the clarity of the water column. For largest epiphytic areas, a 34.5% increase of captured sediment mass is observed. The sediment trapped on the leaves can be 10 times greater for canopies with the highest epiphytic areas than those without epiphytes.

Therefore, both the effective leaf length and the level of epiphytic colonization are found to determine the seagrass canopy ability at distributing sediment

DOI: 10.1016/j.marenvres.2023.106238

Highlights

  • Seagrass epiphytic communities serve as indicators of coastal environment quality, with this study focusing on their impact on sediment capture and distribution.
  • Thirteen experiments in a wave flume examined Zostera marina canopies with three epiphyte models, revealing their influence on sediment deposition, capture on leaf surfaces, and suspension within the canopy.
  • Results indicated that higher epiphytic areas and larger leaf heights in Z. marina canopies increase sediment capture on epiphyte surfaces, reducing suspended sediment and enhancing water clarity.
  • The study emphasized that the effectiveness of seagrass canopy in distributing sediment is determined by both effective leaf length and the extent of epiphytic colonization, demonstrating their role in managing sediment in coastal ecosystems.

Related articles

eagrass roots of cymodocea nodosa eroding in cliff formation in sandy sediments Mallorca, Spain, Mediterranan sea

40. Seagrass roots strongly reduce cliff erosion rates in sandy sediments

Journal Papers
Infantes E, Hoeks S, Adams MP, van der Heide T, van Katwijk M, Bouma TJ
Marine Ecology Progress Series, 700:1-12, DOI: 10.3354/meps14196
Publication year: 2022
Close-up photo of a small gastropod sitting on a Zostera marina eelgrass leaf in Gullmarsfjord, Swedish west coast.

27. Severe shifts of Zostera marina epifauna: comparative study between 1997 and 2018 on the Swedish Skagerrak coast

Journal Papers
Riera R, Vasconcelos J, Baden S, Gerhardt L, Sousa R, Infantes E
Marine Pollution Bulletin, 158: 111434
Publication year: 2020

26. Role of eelgrass on bed-load transport and sediment resuspension under oscillatory flow

Journal Papers
Marin-Diaz B, Bouma TJ, Infantes E
Limnology and Oceanography, 65(2): 426-436
Publication year: 2020
Eelgrass Zostera marina meadow

33. Major impacts and societal costs of seagrass loss on sediment carbon and nitrogen stocks

Journal Papers
Moksnes P-O, Röh M, Eklöf J, Eriander L, Infantes E, Boström C
Ecosphere (7):e03658. DOI: 10.1002/ecs2.3658
Publication year: 2021
Seagrass Meadow of Zostera Marina with Bend Leaves Due to High Current

41. Loss of POC and DOC on seagrass sediments by hydrodynamics

Journal Papers
Egea LG, Infantes E, Jiménez-Ramos R
Science of the Total Environment, 901: 165976
Publication year: 2023
Increased current flow enhances the risk of organic carbon loss from Zostera marina sediments: Insights from a flume experiment

17. Increased current flow enhances the risk of organic carbon loss from Zostera marina sediments: Insights from a flume experiment

Journal Papers
Dahl M, Infantes E, Clevesjö R, Linderholm HW, Björk M, Gullström M
Limnology and Oceanography, 63(6): 2793-2805.
Publication year: 2018
High Seasonal Variability in Sediment Carbon Stocks of Cold‐Temperate Seagrass Meadows

24. High seasonal variability in sediment carbon stocks of cold-temperate seagrass meadows

Journal Papers
Dahl M, Asplund ME, Deyanova D, Franco JN, Koliji A, Infantes E, Perry D, Björk M, Gullström M
Journal of Geophysical Research: Biogeosciences, 125, e2019JGR005430
Publication year: 2020