Dahl M, Asplund ME, Deyanova D, Franco JN, Koliji A, Infantes E, Perry D, Björk M, Gullström M
Journal of Geophysical Research: Biogeosciences, 125, e2019JGR005430
Publication year: 2020

ABSTRACT

Seagrass meadows have a high ability to capture and store atmospheric CO2 in the plant biomass and underlying sediment and thereby function as efficient carbon sinks. The seagrass Zostera marina is a common species in the temperate Northern Hemisphere, a region with strong seasonal variations in climate.

How seasonality affects carbon storage capacity in seagrass meadows is largely unknown, and therefore, in this study, we aimed to assess variations in sedimentary total organic carbon (TOC) content over a 1‐year cycle in seagrass meadows on the Swedish west coast. The TOC was measured in two Z. marina sites, one wave exposed and one sheltered, and at two depths (1.5 and 4 m) within each site, every second month from August 2015 to June 2016.

We found a strong seasonal variation in carbon density, with a peak in early summer (June), and that the TOC was negatively correlated to the net community production of the meadows, presumably related to organic matter degradation. There was seasonal variation in TOC content at all sediment sections, indicating that the carbon content down to 30 cm is unstable on a seasonal scale and therefore likely not a long‐term carbon sink.

The yearly mean carbon stocks were substantially higher in the sheltered meadow (3,965 and 3,465 g m−2) compared to the exposed one (2,712 and 1,054 g m−2) with similar seasonal variation. Due to the large intra‐annual variability in TOC content, seasonal variation should be considered in carbon stock assessments and management for cold‐temperate seagrass meadows.

DOI:10.1029/2019JG005430

Highlights

• Seagrass meadows function as efficient carbon sinks, storing atmospheric CO2 in plant biomass and sediment.
• A study aimed to assess variations in sedimentary total organic carbon (TOC) content over a 1-year cycle in seagrass meadows on the Swedish west coast.
• The study found a strong seasonal variation in carbon density, with a peak in early summer, and that the TOC was negatively correlated to the net community production of the meadows, likely related to organic matter degradation.
• Seasonal variation in TOC content at all sediment sections indicates that the carbon content down to 30 cm is unstable on a seasonal scale and should be considered in carbon stock assessments and management for cold-temperate seagrass meadows.

total organic carbon (TOC) density (g cm−3) from August 2015 to June 2016
Changes in TOC stocks (0–25 cm, g m−2) between the different months from August 2015 to June 2016. TOC = total organic carbon.
Carbon and Nitrogen Content (Yearly Mean ± Standard Error) for the Seagrass

Related articles

Increased current flow enhances the risk of organic carbon loss from Zostera marina sediments: Insights from a flume experiment

17. Increased current flow enhances the risk of organic carbon loss from Zostera marina sediments: Insights from a flume experiment

Journal Papers
Dahl M, Infantes E, Clevesjö R, Linderholm HW, Björk M, Gullström M
Limnology and Oceanography, 63(6): 2793-2805.
Publication year: 2018
Acoustic Doppler Velocimeter (ADV) Vectrino, Nortek measuring wave action and flow velocities in a Posidonia seagrass meadow.

6. Effect of a seagrass (Posidonia oceanica) meadow on wave propagation

Journal Papers
Infantes E, Orfila A, Simarro G, Luhar M, Terrados J, Nepf H
Marine Ecology Progress Series 456: 63-72
Publication year: 2012
Artificial seagrass on hydraulic flume at MIT

3. Wave induced velocities inside a model seagrass bed

Journal Papers
Luhar M, Coutu S, Infantes E, Fox S, Nepf H
Journal of Geophysical Research Vol. 115, C12, 1-15
Publication year: 2010
Eelgrass Zostera marina meadow

33. Major impacts and societal costs of seagrass loss on sediment carbon and nitrogen stocks

Journal Papers
Moksnes P-O, Röh M, Eklöf J, Eriander L, Infantes E, Boström C
Ecosphere (7):e03658. DOI: 10.1002/ecs2.3658
Publication year: 2021

26. Role of eelgrass on bed-load transport and sediment resuspension under oscillatory flow

Journal Papers
Marin-Diaz B, Bouma TJ, Infantes E
Limnology and Oceanography, 65(2): 426-436
Publication year: 2020
eagrass roots of cymodocea nodosa eroding in cliff formation in sandy sediments Mallorca, Spain, Mediterranan sea

40. Seagrass roots strongly reduce cliff erosion rates in sandy sediments

Journal Papers
Infantes E, Hoeks S, Adams MP, van der Heide T, van Katwijk M, Bouma TJ
Marine Ecology Progress Series, 700:1-12, DOI: 10.3354/meps14196
Publication year: 2022
Seagrass Meadow of Zostera Marina with Bend Leaves Due to High Current

41. Loss of POC and DOC on seagrass sediments by hydrodynamics

Journal Papers
Egea LG, Infantes E, Jiménez-Ramos R
Science of the Total Environment, 901: 165976
Publication year: 2023