Meysick L, Infantes E, Rugiu L, Gagnon K, Boström C.
Limnology and Oceanography, 67(3): 621-633, doi: 10.1002/lno.12022
Publication year: 2022

ABSTRACT

Habitat forming ecosystem engineers play critical roles in structuring coastal seascapes. Many ecosystem engineers, such as seagrasses and epifaunal bivalves, are known to have positive effects on sediment stability and increase coastal protection and ecosystem resilience. Others, such as bioturbating infaunal bivalves, may instead destabilize sediment. However, despite the common co-occurrence of seagrasses and bivalves in coastal seascapes, little is known of their combined effects on sediment dynamics.

Here, we used wave flumes to compare sediment dynamics in monospecific and multispecific treatments of eelgrass, Zostera marina, and associated bivalves (infaunal Limecola balthica, infaunal Cerastoderma edule, epifaunal Magallana gigas) under a range of wave exposures. Eelgrass reduced bedload erosion rates by 25-50%, with digital elevation models indicating that eelgrass thereby affected the sediment micro-bathymetry by decreasing surface roughness and ripple sizes. Effects of bivalves on sediment mobilization were species-specific; L. balthica reduced erosion by 25%, C. edule increased erosion by 40%, while M. gigas had little effect.

Importantly, eelgrass modified the impacts of bivalves: the destabilising effects of C. edule vanished in the presence of eelgrass, while we found positive additive effects of eelgrass and L. balthica on sediment stabilisation and potential for mutual anchoring. Such inter-specific interactions are likely relevant for habitat patch emergence and resilience to extreme wave conditions. In light of future climate scenarios where increasing storm frequency and wave exposure threaten coastal ecosystems, our results add a mechanistic understanding of sediment dynamics and interactions between ecosystem engineers, with relevance for management and conservation.

Highlights

  • Habitat-forming ecosystem engineers play important roles in coastal seascapes
  • Seagrasses and bivalves have positive effects on sediment stability and coastal protection
  • Little is known about the combined effects of seagrasses and bivalves on sediment dynamics
  • Eelgrass reduces bedload erosion rates and modifies the impact of bivalves, which has relevance for management and conservation of coastal ecosystems under future climate scenarios.

Related articles

The influence of hydrodynamics and ecosystem engineers on eelgrass seed trapping

22. The influence of hydrodynamics and ecosystem engineers on eelgrass seed trapping

Journal Papers
Meysick L, Infantes E, Boström C
PLoS ONE 14(9): e0222020
Publication year: 2019
A small seedling of the seagrass Posidonia oceanica in a container filled with water

15. Dispersal of seagrass propagules: interaction between hydrodynamics and substratum type

Journal Papers
Pereda L, Infantes E, Orfila A, Tomas F, Terrados J
Marine Ecology Progress Series, 593: 47-59.
Publication year: 2018

26. Role of eelgrass on bed-load transport and sediment resuspension under oscillatory flow

Journal Papers
Marin-Diaz B, Bouma TJ, Infantes E
Limnology and Oceanography, 65(2): 426-436
Publication year: 2020

34. Making realistic wave climates in low-cost wave mesocosms: a new tool for experimental ecology & biogeomorphology

Journal Papers
Infantes E, de Smit J, Tamarit E, Bouma TJ
Limnology and Oceanography: Methods, 19: 317-330
Publication year: 2021
Wind exposure and sediment type determine the resilience and response of seagrass meadows to climate change

36. Wind exposure and sediment type determine the resilience and response of seagrass meadows to climate change

Journal Papers
de Smit, Bin Mohd Noo MS, Infantes E, Bouma TJ
Limnology and Oceanography, 67: 121-132, DOI: 10.1002/lno.11865
Publication year: 2021